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Introduction  

Projections of the spatial distribution of population are critical for modeling land-

use/land-cover change (Meiyappan et al., 2014), urbanization (Gao and O’Neill, 2019) 

and risk assessment to climate change (Jones et al., 2015). We detail and analyze a 

spatial model that can generate population distributions at 1 km resolution in each U.S. 

state. The model combined with the proposed semantic framework facilitate creating 

projections of population distributions according to distinct socioeconomic scenarios for 

human-environment analysis. This work improves and tailors the gravity-based 

population downscaling model developed by Jones and O’Neill (2013, 2016), based on 

earlier work by Grübler et al. (2007) to each state. This model has several advantages. 

First, it relies on multiple ancillary datasets that make it adaptive to be improved as new 

data become available. Second, the well-defined structure of the model makes it easy to 

adapt to different study areas and requirements. Third, its underlying gravitational form 

employs two historically grounded parameters that characterize different patterns of 

spatial population change.  

The model consists of calibration and projection components. We focus on the 

calibration component, in which we employ historical urban and rural population grids 

of each state in 2000 and 2010 to estimate the optimum pair of parameters that represent 

the state’s spatial population change over the decade.  

Method 

The model takes a spatial downscaling approach that allocates state-level aggregate 

urban/rural population change during a period to its constituent grid cells based on 

estimating urban/rural suitability values (Equation 1). Notably, when the population 

decreases, the change is allocated proportional to the inverse of suitability.  

                                                      𝑣𝑖 = 𝑙𝑖 ∑ 𝑃𝑗
𝛼 × 𝑒−𝛽𝑑𝑖𝑗
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vi is the suitability value estimated for the focal cell, i, li is the mask value, Pj is the 

population of the neighboring cell, j, and dij is the distance between the focal cell and its 

neighboring cells. The summation over j is performed for n cells contained in the 

neighborhood within100 km of the focal cell. 



We derived a mask value (li) for each cell to exogenously constrain population 

allocation according to physical barriers such as elevation, slope and land-cover, as well 

as mandates determined in the form of preserved areas by both federal and state 

governments. Figures 1 and 2 demonstrate the calculation of mask values. 

 

Figure 1. Steps to create the state-level spatial mask layer. 

 



Figure 2. Estimation of spatial mask value for a hypothetical cell. 

The α parameter indicates the degree to which the population size of surrounding cells 

translates into the suitability of a focal cell. A positive value indicates that larger 

population within the 100 km neighborhood results in higher suitability of the focal cell 

(while a negative value of alpha would imply otherwise). The β parameter reflects the 

significance of distance to surrounding cells on the suitability of a focal cell. The higher 

positive value of the parameter indicates greater deterrent effect of distance. In that 

case, local characteristics prevail in attracting more population, and the presence of 

more distant (but still within 100 km) population centers matters less. In contrast, 

negative values imply a lower friction of distance. When β is 0, it means each cell 

contributes to the suitability of a focal cell only proportional to its population raised to 

α.  

We estimated α and β parameters for the rural and urban population using an 

optimization approach (Figure 3). We generated 1 km resolution historical population 

grids in 2000 and 2010 for each state using its census blocks as the smallest available 

units.  



 

Figure 3. The calibration process of the gravity-based population downscaling model. 

We formulated a semantic framework to map output parameters to different types of 

spatial population change (Figure 4). This important step allows us to modify 

parameters in compliance with socioeconomic scenarios such as the Intergovernmental 

Panel on Climate Change’s shared socioeconomic pathways (SSPs) (O’Neill et al., 

2017) in the future.  



 

Figure 4. The influence of α and β on the suitability of a focal cell. 

Results and Discussion 

Figure 5 shows state-level choropleth maps of the distribution of estimated parameters. 

Figures 6 and 7 illustrate scatterplots of those parameters, respectively. We divided the 

plots into four quadrants consistent with Figure 4. We also differentiated states based on 

their sign of population change to reflect the points in Figure 4.  



 

Figure 5. State-level (a) α for rural population, (b) β for rural population, (c) α for urban 

population and (d) β for urban population. Population declining states have white 

borders. 

 

Figure 6. Scatterplot of state-level urban α and β parameters. 



 

Figure 7. Scatterplot of state-level rural α and β parameters. 

Figure 6 shows that all states with urban population growth follow a consolidated urban 

growth pattern. Figure 8 shows a negative association between urban α values and 

urbanization levels of states with growing urban population. This generally suggests the 

increasing importance of populous centers in states that have lower urbanization, where 

urban growth occurs most strongly in the most heavily populated regions. Conversely, 

in highly urbanized states, urban population growth is less strongly concentrated in the 

most highly populated regions. Michigan, as the only state with urban population 

decline lands in the second quadrant, suggesting a consolidation-oriented decline 

pattern. This is consistent with the historical pathway that Detroit, as the dominant 

urban center in the state, had experienced (McDonald, 2014).  



 

Figure 8. Relation of urbanization levels of U.S. states in 2010 (except Michigan) to 

their estimated urban α parameters. 

Figure 7 shows that states with the highest rural population growth, such as Alaska, 

Wyoming, Arizona, Maine and Idaho follow the consolidated pattern to varying 

degrees. The low rural population growth in Indiana, Maryland, North Carolina, 

Virginia, Connecticut and Rhode Island tends to settle close to existing population 

centers in low density regions. Texas, Kentucky, Tennessee, Georgia, New Hampshire 

and Washington are states with growing rural population with their parameters in the 

fourth quadrant, pointing to a sprawling development pattern. However, the resulting β 

values, except for New Hampshire, are close to 0, suggesting no significant preference 

on distance.  

Many states with significant rural population decline such as Nevada, Nebraska, North 

Dakota, Kansas and Massachusetts are situated in the second quadrant with the 

maximum allowable β and varying degrees of α, following the consolidation-oriented 

decline pattern. Oregon, Iowa, Alabama, Louisiana and Utah are states with rural 

population decline that lie in the first quadrant, pointing to a pattern of decline in the 

most remote, low density areas. The rural population decline in majority of these states 

is small.  

The final output of the projection component of this model will be a set of state-level 

total population grids according to socioeconomic scenarios for human-environment 

analysis. Thus, we evaluated the calibration component based on total population grids 

(summation of urban and rural). We compared the estimated population grid in 2010 

with the corresponding observed (block-based) grid. We derived cumulative distribution 

functions (cdf) of errors for each state. The horizontal axis represents absolute values of 

percentage differences while the vertical axis is the corresponding cumulative 



population percentage. Errors are calculated based on mean population values over 10 

km by 10 km windows to alleviate the spatial mismatch issue typical at the original 1 

km resolution. Figure 9 shows these plots for several states. 

 

Figure 9. CDF plots based on total population grids. 

Plots with narrower distributions indicate better model performance, whereas wider 

distributions indicate the contrary. Figure 10 shows mean absolute values of percentage 

differences corresponding to 50% and 90% of states’ total population. While the 

performance of the model is overall satisfactory (e.g. 49 states with errors lower than 

20% at 50% of their population and 38 with errors lower than 30% at 90% of their 

population), both figures demonstrate that the model performed well in some states 

including New York, New Jersey, Massachusetts and Connecticut while did not so in 

states such as Texas, Arizona and Nevada, suggesting the model’s poor performance in 

capturing spatial change patterns within them. 



 

Figure 10. Absolute percentage differences at 50% and 90% of total population in each 

state. 

Conclusions and Future Direction 

In this paper we calibrated and evaluated a spatial population downscaling model. The 

structure of the model and our semantic framework allow us to modify the model for 

population projection according to different socioeconomic scenarios. For example, 

current historically estimated values of Idaho (rural: (0.4, 1.82), urban: (1.48, 1.52)) can 

be retained for population projection from 2010 on according to SSP2 (business as 

usual). Based on historical parameters depicted in Figures 6 and 7 and for SSP3, as a 

scenario with slow urbanization and low population growth, those values can gradually 

change to rural: (-2, 2) and urban: (0, 2) over 2010 to 2100. For SSP5 with high 

urbanization and rapid population growth, they can gradually change to rural: (1, -0.5) 

and urban: (2, 0). We will create population projection grids for all U.S. states based on 

these suggested parameters and report on their performance in future work. 
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